
AD-A158 970 PROBILISTiC ANLYSIS OF A NETWORK RESOURCE LLOCTION 1/1
ALGORITHM REVXSION(U) YALE UNJY NEW HAYEN CT DEPT OF
COMPUTER SCIENCE N A LYNCH ET AL. APR 95

UNCLASSIFIED YALEU/DCS/TR-48 NS4-2-K-154 F/S 12/2 NL

EmEEnEEoon

EEE hh-hhhIEE

11111 1

li1i! 1 11111.

11111 11111J.4 1.6

MICROCOPY RESOLUTION TEST CHART

IATIONAL BUREAU OF STANDROS 19i63 -A

.5.

i- " " "i ' '-;' i i : ; i ". , ,. . . ,., . .

REPRODUCED AT GOVE4INT EXPSE

0

PROBABILISTIC ANALYSIS OF A NETWORK RESOURCE
ALLOCATION ALGORITHM

Nancy A. Lynch, Nancy D. Griffeth,
Michael J. Fischer and Leonidas J. Guibas

YALEU/DCS/TR 418

submitted: June., 183
revised: April, 1985

DIG

__ ' YALE UNIVERSITY E
" DEPARTMENT OF COMPUTER SCIENCE

I to =^a%& 85 09 06 " 022.

* ' L-m .. - , .=, .o : ., .,,. ,, .# ,.= . ., .,.

% . , •. - - - - - , • . . . , . I

PROBABILISTIC ANALYSIS OF A NETWORK RESOURCE
ALLOCATION ALGORITHM

Nancy A. Lynch, Nancy D. Griffeth,
Michael J. Fischer and Leonidas J. Guibas

YALEU/DCS/TR 418

submitted: June, 1983
revised: April, 1985

DTIC
E

:, I o n , ,M tam____ A0

L SECURITY CLASSIFICATION OF THIS PAGE (Whe.n Deja Entered)_
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
1. REPORT NUMBER GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PROBABILISTIC ANALYSIS OF A NETWORK RESOURCE Technical Report

ALLOCATION ALGORITHM 6. PERFORMING OAG. REPORT NUMBER

7. AUTHOR(s) 9. CONTRACT OR GRANT NUMBERfs)

Nancy A. Lynch, Nancy D. Griffeth, ONR: N00014-82-K-0154OR Lj3 and
Michael J. Fischer and Leonidas J. Guibas AM DA 0 D0AIRMICS : DAAK70-7T'-D-0087

_NSF: MCS-7924370 (See back)
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Department of Computer Science/ Yale University AREA & WORK UNIT NUMBERS

Dunham Lab./ 10 Hillhouse Avenue
New Haven, Connecticut 06520

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research April, 1985
800 N. Quincy 13. NUMBER of PAGES

Arlington, Virginia 22217 45
14. MONITORING AGENCY NAME & ADDRESS(I diflerent irom Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS&. DECL ASSI FIC ATION/DOWNGRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distributed unlimited.

17. DISTRIBUTION STATEMENT (of rho abstract entered in Block 20. It different from Report)

It. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on revere side If necessary end Identify by block number)

distributed algorithm
resource allocation
probabilistic analysis
tree network

•. ST T C Inu 1 If nec d dn I by k num
resurce "' suc as agorl urese , f rr aiioct"1' g a large number of identical
resources usun as airline Ces M to requests which can arrive anywhere in a
disributed network. Resources, once allocated, are never returned. The algo-
rithm searches sequentially, exhausting certain neighborhoods of the request
origin before proceeding to search at greater distances. Choice of search di-
rec ion is made nondeterministically. Analysis of expected response time is
simplified by assuming that the search direction is chosen probabilistically,
that messages require constant time, that the network is a tree with all leaves
at the same distance From the root, and that requests and resources occur only at
leaves. It is shown that the response time is approximated by the number of mes-
sages of one that are sent during the execution of the algori hm, and that this
number of messages is a nondecreasinx function of the interarrival time isee bac)

DD I FAN 7 1473 EDITION OF I NOVs is OeSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wen Data Xntered)

~~~~.." ...... ..'_" .". . ...-......... - -- ,-..... .. . . . . .- . - " ' .- .... ,,. .: . -.. .... ,



8. 1SF continued: MCS-8116678, MCS-8200854 and DCR-8302391
DARPA: N00014-83-K-0125.

20. for requests. Therefore, the worst case occurs when requests come in so far
apart that they are processed sequentially. The expected time for the
sequential case of the algorithm is analyzed by standard techniques. This
tte is shown to be bounded by a constant, independent of the size of the
network. It follows that the expected response time for the algorithm is
bounded in the same way.

Uke

.1~

I.



Probabilistic Analysis of a Network Resource

Allocation Algorithm

Nancy A. Lynch.
Massachusetts Institute of Technology

Cambridge, Massachusetts

Nancy D. Griffeth
Georgia Institute of Technology

Atlanta, Georgia Accession For

Michael J. Fischer DTIC TAB
Yale University Unannounced 0

New Haven, Connecticut Just ificatio 

and By
Distri bution/

Leonidas J. Guibas Availability CodesStanford UniversityStanford, California, andpaoDCSC~o Cioma-..._Dst ._lSpecil

Palo Alto, California

submitted: June, 1983
revised: April, 1985 0o,

This work was supported in part by the Office of Naval Research under Contract
N00014-82.K-0154, by the Office of Army Research under Contracts DAAG29-79-C-0155
and DAAG29-84-K.0058, by the Army Institute Research in Management Information and
Computer Systems under Contract DAAK70-79-D.0087, by the National Science
Foundation under Grants MCS-792437e, MCS-8116678, MCS.8200854, MCS-8306854, and
DCR.8302391, and by the Defense Advanced Research Projects Agency (DARPA) under
Grant NOOO14-83.K-0125.



-. ...- .- .. . . o . . ..

2

Probabilistic Analysis Network Resource

Nancy A. Lynch
M.I.T., Laboratory for Computer Science

545 Technology Sq., NE43-522
Cambridge, MA. 02139

p'..

b.

,"



3

Abstract

A distributed algorithm is presented, for allocating a large number of identical resources (such as
airline tickets) to requests which can arrive anywhere in a distributed network. Resources, once
allocated, are never returned. The algorithm searches sequentially, exhausting certain
neighborhoods of the request origin before proceeding to search at greater distances. Choice of
search direction is made nondeterministically.

Analysis of expected response time is simplified by assuming that the search direction is chosen
probabilistically, that messages require constant time, that the network is a tree with all leaves at the
same distance from the root, and that requests and resources occur only at leaves. It is shown that
the response time is approximated by the number of messages of one that are sent during the
execution of the algorithm, and that this number of messages is a nondecreasing function of the
interarrival time for requests. Therefore, the worst case occurs when requests come in so far apart
that they are processed sequentially.

The expected time for the sequential case of the algorithm is analyzed by standard techniques. This
time is shown to be bounded by a constant, independent of the size of the network. It follows that the
expected response time for the algorithm is bounded in the same way. "  .

I.

V

p,



4

List of Symbols:
F.

E element of

absolute value of
0 empty set

minus
( lessthan
> greater than
< less than or equal to

greater than or equal to
summation

U union
{ set
- is not equal to

K: assignment
right arrow (function mapping, limit)
Greek letter phi

c capital script C
brackets

/ division
00 Infinity
a Greek letter alpha
x multiplication sign

radical sign

-

°.*

* .. S StL*b- . . ~ -a- - * A * -



5

1. Introduction
We consider the problem of allocating a number of identical resources to requests arriving at the

sites of a distributed network. We assume that the network is configured as a tree. The nodes of the

tree are processors and the edges are communication lines connecting the processors. Processes at

a node may communicate only over the tree edges, with processes at other nodes. Resource

allocation is managed by a collection of communicating resource allocation processes, one at each

node. We will henceforth refer only to !he node, identifying it with both the processor and the

resource allocation process at the node.

From time to time, a request arrives at a node (potentially any node of the network) from the

outside world. One of the resources should eventually be granted to the request, subject to the

following conditions:

1. No resource is granted more than once. (Once granted, a resource is not returned. Thus, there

is no legitimate reason to grant it more than once.)

2. At most one resource is granted to each request.

3. A node grants resources only to those requests which arrive at that node.

4. If the number of requests is no greater than the number of resources, then each request

eventually receives a resource.

5. If the number of resources is no greater than the number of requests, then each resource is

eventually granted to a request.

For convenience in describing allocation of specific resources to specific requests, we assume

that each resource and request has a unique identifier.

The execution model for this distributed network is event-based. Two types of events may occur

at a node: (1) a request may arrive from the outside world, and (2) a message may arrive from a

neighbor in the tree. Each event triggers an indivisible step at the node. This step may include

changing state, sending messages to other nodes, and granting resources to requests. (We ignore

the time involved in this local processing when we measure the response time, considering only the

communication time.) We assume that the communication lines are reliable, that is, each message is

delivered exactly once. However, we do not make any assumptions about the order of message

arrivals.

There are many interesting approaches to solving this resource allocation problem. In a

centralized approach, all resources are controlled by a single central node. When a request arrives at

a possibly different node, a "buyer" is commissioned, who travels, via messages, to the central node

, * .. *. *\.. • . % , ,a . , %, % " , , -, ., . - ." . " . .. " . .,. " .-. ' : ., - . . • . - ,



6

to obtain a resource. The buyer then carries the resource back to the node where the request

originated, so that the resource can be granted to the request at that location.

An alternative approach is to decentralize control of the resources, giving each node of the

network control of some of them. In this approach, the buyers must search for the resources. An

important choice to be made in designing an efficient search strategy is the choice between sending

only one buyer to search for resources for each request and sending several buyers in parallel to

search different parts of the tree. The former search strategy, which we call the sequential search

strategy, avoids a number of problems arising from the parallel strategy, such as what to do about

other buyers when one of them has found a resource. The next choice, if the sequential search

strategy is used, is the choice of direction to search the tree. A good choice would involve guessing

which nodes are most likely to have free resources when the buyer arrives at them.

Other strategies involve combining a decentralized search strategy with a dynamic resource

redistribution strategy, letting resources search for requests (rather than vice versa), or giving nodes

control of fractions of resources rather than whole resources.

One complexity measure which is useful for evaluating different strategies is the expected

response time. This is a measure upon which any of the design choices could have a major impact.

For example, the response time when using a centralized strategy must depend strongly on the

network size. However, the decentralized strategies have the potential of depending on this size to a

lesser extent.

In the first half of this paper, we present an algorithm for solving this resource allocation problem.

Our algorithm is a decentralized solution in which each node controls some whole number of

resources. A sequential search strategy is used, in which the direction to be searched is chosen

nondeterministically. Certain neighborhoods of the node at which a request originates are exhausted

before the search proceeds to more distant neighborhoods.

In order to gain some insight into the expected response time for our algorithm, we simulated its

behavior, in some special cases. The nondeterministic choice of search direction was resolved by

using a probabilistic choice, where the probabilities for the different directions depended on the initial

placement of resources in those directions. We assumed an exponential distribution for time of

arrival of requests, a uniform distribution for arrival location, and a normal probability distribution for

message delivery time. We also assumed that all leaves of the network tree were at the same distance

from the root, and that requests and resources occurred only at leaves. We first noted that expected

response time was extremely good, with an upper bound that seemed to be independent of the size of

the network. This was in marked contrast to a centralized algorithm. Next, we made a surprising

observation: the expected response time appeared to be a nondecreasing function of the expected

. ..... . .. .... , . ,.. .. . .. . . .. . .. ,' . .. . .°... . .. . . . .-.- . ,, . .. . .. . -.. . . .. ,..,, . .-



7

interarrival time for requests. If true, this observation would imply that the worst case for the

algorithm was actually the case where requests come in so far apart that they are processed one at a

time. This observation contradicted our preliminary intuitions about the algorithm: we had thought

that the worst cases would arise when there was greatest competition among requests searching for

resources.

Using these observations as hints, we were able to carry out a substantial amount of analysis of

the algorithm's behavior, and this analysis comprises the second half of this paper. Namely, we prove

an upper bound on the expected response time for a special case in which, among other restrictions,

all leaves of the network tree are at the same distance from the root, and requests and resources

occur only at leaves. First, we show that the response time can be bounded in terms of the number of

messages of one type that are sent during the execution of the algorithm. Then we show that this

number of messages is a nondecreasing function of the interarrival time for requests. Therefore, the

worst case occurs when requests come in so far apart that they are processed sequentially. We

analyze the expected time for the sequential case, showing it to be bounded by a constant,

independent of the size of the network. It follows that the expected response time for the algorithm is

also bounded by a constant.

Although the expected response time for our algorithm is very good, we do not claim that it is

optimal. In fact, there are some simple changes that one would expect to yield improvements.

Unfortunately, with these changes, the algorithm can no longer, be analyzed using the same

techniques; thus, we are not really certain that they are improvements at all.

There are several contributions in this paper. First, we think that the algorithm itself is interesting.

Second, we have identified an interesting criterion for the performance of a distributed algorithm:

that the performance be independent of the size of the network. Satisfying this criterion seems to

require an appropriate, decentralized style of programming. Third, the analysis is decomposed in an

interesting way: a sequential version is analyzed using traditional methods, and the performance of

the concurrent algorithm is shown to be bounded in terms of the sequential algorithm. It is likely that

this kind of decomposition will prove to be useful for analysis of other distributed algorithms. For

instance, a similar decomposition was used in the proof of correctness of a systolic stack [Guibas,

and Liang (1982)].

The contents of the rest of the paper are as follows. Section 2 contains the algorithm, and Section

3 contains arguments for its correctness. Sections 4-6 contain the analysis of the algorithm. Section

4 proves the monotonicity result, which implies that the sequential case of the algorithm is worst.

Section 5 analyzes the sequential case. Section 6 pulls together the results of Sections 4 and 5, thus

giving a general upper bound. Finally, Section 7 describes some remaining questions.



8

2. The Algorithm
In this section, we present our algorithm. We begin with an informal decription, followed by a

more formal presentation.

2.1. Informal Description

We assume that the network is a rooted tree.

Our algorithm is a decentralized algorithm with a sequential searching strategy. Requests send

buyers to search for resources. When a buyer finds a resource, it "captures" it. Each captured

resource travels back to the origin of this buyer (or possibly some other buyer, if there is interference

between the processing of concurrent requests), so that the grant can occur where the request

originated.

When a request or buyer arrives at any node, any free resource at the node is captured. If there

are no free resources there, a buyer is sent to a neighboring node, determined as follows. Each node

keeps track of the latest estimate it knows, for the number of resources remaining in each of its

subtrees. Each node sends a message informing its parent of each new request which has originated

within the child's subtree. The estimate which a node keeps for the number of resources remaining in

a subtree, is calculated from the initial placement of resources in that subtree, the number of requests

which are known to have originated within that subtree and the number of buyers which the node has

already sent into that subtree. In order to decide on the direction in which to send a buyer, a node

uses the following rules. First, it never sends a buyer out of its subtree if it estimates that its subtree

still contains a resource. Second, it only sends a buyer downward to a child if it estimates that the

child's subtree contains a resource. Third, if there is a choice of child to which to send the buyer, the

node makes a nondeterministic choice. (Later, we will constrain this decision to a probabilistic

choice using a particular random choice function. This constraint will be important for the complexity

analysis, but is not needed for the correctness of the algorithm.)

It is easy to see that any subtree which a node considers to contain no resources, actually

contains no resources. Thus, no buyer is ever sent out of a subtree actually containing a resource.

On the other hand, the perceived information about the availability of a resource in a child's subtree

can be an overestimate, in case of interference among concurrent requests.

EXAMPLE

Suppose that request A enters at the node shown below, and its buyer travels upward until it

reaches an ancestor that perceives the availability of a resource in one of its subtrees. Then the

buyer travels downward toward that resource. Shortly before A's buyer reaches the resource,

another request, B, arrives at the node shown. Suppose B's buyer reaches the resource and captures



23

down the edges of the tree; all time used by the algorithm is occupied by the transmission
of appropriate buyer and virtual buyer messages. The reason that we have an inequality
rather than an equation here is that buyers are permitted to travel "discontinuously", as
described in Section 3.

(b) This equation is true because captured resources travel continuously via captured
resource messages.

(c) We must show that each captured resource message always moves in such a way
as to "negate" a buyer or virtual buyer message. This is a bit tricky to argue, because of
the discrepancies between estimates at opposite ends of an edge.

A captured resource only moves over an edge if the net flow of buyers into the node on
that edge, as estimated at the near endpoint, is positive. By moving over that edge, the
captured resource negates an incoming buyer or virtual buyer along that edge, as
estimated at the near endpoint. Because of the assumption that all messages take exactly
time 1, by the time the captured resource reaches the far endpoint, the negated buyer or
virtual buyer is also counted in the estimate of outgoing buyers and virtual buyers at the
opposite endpoint. The arrival of the captured resource at the far endpoint can thus be
regarded as negating an outgoing buyer or virtual buyer at the far endpoint as well.

(d) Straightforward by Lemma 2 and (a)-(c).U

Now, we introduce an additional restriction, to remain in force for the remainder of Section 4.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

As usual, the following lemma is intended to hold for all valid domains of definition.

°.-. .-....... % •% o° .. q. ........ ... , ,. ............. ..



22

Let f denote an arbitrary probability density function whose domain consists of positive reals.

Extend the domain of the function cOStT~p to the set of such functions by defining costTP(f) to be the

expected value of costT.p(r), where r is of length total(p), with its successive locations chosen

independently using the distribution qPT' and its successive interarrival times chosen using f. That is,

at the time the algorithm begins, and at the time of each request, the probability that the next arrival

occurs exactly t units later is f(t). We will be primarily interested in this cost, costTp(f).

We define searchcost T p(r), searchcostT, (I), etc., analogously to our earlier definitions.

The following claim is true for all domains for which the definitions are valid.

Lemma 2: costT.p = searchcostT,p + returncostTP.

Proof: Straightforward.I

Next, we will relate the given cost measures to the total numbers of various kinds of messages sent

during the execution of the algorithm. Note that during the execution of an algorithm, the estimates

of "BUYER" and virtual buyer messages sent along an edge can be different at the two ends of the

edge. However, after the entire execution of the algorithm is completed, the discrepancy disappears,

so that the following definitions are unambiguous. Let bnumTP(r.C) denote the total number of

"BUYER" messages sent on all edges during the execution of the algorithm on r using C. Let

vbnumT.P(r,C) denote the total number of virtual buyer messages sent on all edges during the

execution of the algorithm on r using C. Let gnum, p(rC) denote the total number of captured

resource messages sent on all edges during the execution of the algorithm on r using C. As before,

define bnumTP (r), bnumT P(f) , etc.

Because of the fact that message delivery time is assumed to be exactly 1, there are some

relationships between the measures describing time costs and the measures describing numbers of

messages. The following lemma describes a set of relationships among the various measures. Note

that all the statements are true over all possible domains of definition.

Lemma 3: (a) searchcostT _5 bnumT~p + vbnumTP.

(b) retumcostT p - gnumT,..

(c) gnumT, __ bnum~p + vbnumTp.

(d) costT., <2[bnumT~p + vbnumT .

Proof: (a) This inequality is true because buyers continue to make progress up and

'' ' -..:. .. ' ''i ' ' . . -" . " " - - -. , . ." . .- - ' , - " .-, . -. ' ' -' - ...- - , , --. .



21

Restriction 2 has the effect of restricting the executions under consideration; for example, all

messages between any two nodes are pipelined they arrive in the order in which they are sent.

While we would like to understand the behavior of the algorithm in the presence of variable message

delivery times, such analysis appears to be more difficult.

4.3. Cost Measures and Preliminary Results

A request pattern, r, is a finite sequence of elements of verticesr x R + whose second components

are monotone nondecreasing. A request pattern represents the sequence of requests that occur,

their locations and times. If r is a request sequence, then length(r) denotes its length.

A choice sequence, c, for v E internal, is an infinite sequence of elements of childrenT(v), with

infinitely many occurrences of each child. If C - {c.) is a collection of choice sequences, one for

each v E internalT, then C can be used in place of probabilistic choices in an execution of the

algorithm, as follows. Each internal node, v, makes choices among its children by choosing the first

unused element of cv satisfying the inequality PLACE(descT(S)) > ARRIVALS(s) + BUYERS(s). That

is, v chooses a child, s, for which v thinks there are still remaining resources in s's subtrse.

Let p be a placement for T. Let r be a request pattern, and C = (c) a collection of choice

sequences, one for each v E internalT. Then Cost T.P(rC) is defined to be the total time from requests

to corresponding grants, if requests arrive according to r and C is used in place of probabilistic

choices. (With suitable conventions for handling events which happen at the same time, the

execution, and hence the cost, is uniquely defined for fixed r and C.)

The cost measure defined above can be broken up into two pieces, as follows. Let

searchcostT.P(r.C) be the total of the times from requests to corresponding captures of resources, if r

and C are used as above. Let returncostTP(r, C) be the total of the times from captures to

corresponding grants of resources.

Now we incorporate a probabilistic construction of C into the cost measure. If r is a request

pattern, let COStT.P (r) denote the expected value of costTP(rC), where C is constructed using 9?T"

(That is, for each v E internalT, the sequence c, is constructed by successive choices from among

childrenT(v), choosing s with probability YT(descT(S))/q)T(desoT(S)), where S - childrenT(v). Among

the sequences thereby generated are some for which it is not the case that each child occurs

infinitely often. However, these sequences form a set of measure 0, so that we can ignore them in

calculating the expected cost measure.) We claim that costT,p (r) is exactly the expected total time

from requests to grants, provided the algorithm is run in the normal way, using probabilistic choices.

That is, the two strategies of constructing choice sequences independently of the algorithm and

carrying out the probabilistic choices on-line give identical results.

............................... 7



20

If v is a vertex of T, let height TV) denote the maximum distance from v to a leaf in its subtree. If e is an

edge in T, then define height T(e) to be the same as heightT(V), where v is e's upper endpoint. Let

heightT denote heighyrootT).

A placement for T is a function p: vertices1 - N, representing the number of resources at each

vertex. We write total(p) for p(verticesr), the total number of resources in the entire tree. We say that

p is nonnull provided total(p) > 0.

A weighted tree, T, is an undirected, rooted tree with an associated probability density function,

'T' on the leaves of T, such that 4PT(V) > 0 for all leaves v. (This assumption is made for technical

reasons, so that we can normalize probability functions without danger of dividing by 0.) If T is a

weighted tree, v E internalT, and S is a nonempty subset of childrenT(v), then let randomT1 s denote the

probability function which returns s E S with probability 9T(desc r(S))/9)T(deSCT(S)). Thus, random., s

returns s with probability proportional to the sum of the probability function values for the

descendants of s.

4.2. Initial Restrictions

For the remainder of Section 4, we assume that the following two restrictions hold.

Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randon'T.s.

Restriction 2:

Delivery time for messages is always exactly 1.

Restriction I describes a particular method of choosing among alternative search directions. This

method does not use all the information available during execution, but only the "static" probability

distribution information available at the beginning of execution. One might expect a more adaptive

choice method to work better; however, we do not know how to analyze such strategies.

............................



--- V7.-. 7: -.---.- . 7 . . -

19

be the number of captured resource messages which have been sent from w to v but have
not yet arrived. (Of course, neither v nor w actually "knows" the value of this variable.)
For any time, t, after the NETBUYERS(w) and REQUEST values have stabilized, any node
v, and any w E NEIGHBORS(v), let A(v,w,t) be the value of NETBUYERS(w) -

NETGRANTS(w) + MESSAGES(w) at v at time t. Note that A(v,w,t) = .A(w,v,t) in all cases.
Let SUM(t) denote 7" .IA(v,w,t)I. We claim that any event which involves the receipt of a
captured resource message does not change SUM(t), while any event which involves the
sending of a captured resource message decreases SUM(t). Therefore, captured resource
messages will not be sent forever: they will eventually subside, at which time they must
have found a matching request.

First, consider an event involving the receipt of a captured resource, by v, from w. The
only term in the sum which is affected is A(v,w,t). The receipt of the messages causes v's
values of MESSAGES(w) and NETGRANTS(w) both to decrease by 1, so that A(v,w,t) is
unchanged. Therefore, SUM(t) is unchanged. Second, consider an event involving the
sending of a captured resource, by v, to w. The only terms in the sum which are affected
are A(v,w,t) and A(w,v,t). At time t just prior to the sending event, it must be that v's value
of NETBUYERS(w) NETGRANTS(w) > 0, which implies that A(v,w,t) > 0. The result of
sending the message is to increase NETGRANTS(w), which means that A(v,w,t) gets
decreased by 1. Therefore, IA(v,w,t)l gets decreased by 1. Thus, also, IA(w,v,t)l gets
decreased by 1, so that SUM(t) gets decreased by 2.1

4. Monotonicity Analysis
The rest of the paper is devoted to an analysis of the time requirements of the algorithm.

Specifically, we measure the sum of the times between requests and their corresponding grants. For

the purpose of carrying out the analysis, certain restrictions will be made. These restrictions will be

introduced as needed.

We begin with some basic definitions. Next, we introduce two restrictions which are needed

throughout the analysis. Then we define and categorize the complexity measures of interest. We

then prove a basic combinatorial result, and use it to prove the monotonicity of the number of

"BUYER" messages as a function of interarrival time. Finally, we show that the expected running

time of the algorithm is bounded by the expected time for the sequential case of the algorithm.

4.1. Definitions

Let N denote the set of natural numbers, including 0. Let R * denote the set of nonnegative reals.

If f is a numerical function with domain V, then extend f to subsets of V by f(W) a IV C w f(v)

Let T be a rooted tree. We write verticesT, internal., and leaves, to denote the indicated sets of

vertices of T. Let root, denote the root. If v E verticesT, we write descT(v) for the set of vertices of T

which are descendants of v (including v itself), parent(v) for v's parent in T, childrenT(v) for v's

children, and neighborsT(V) for childrenT(v) U (parenty(v)).



This expression is, in turn, equal to

PLACE(DESCENDANTS)- IsECHILDRENPLACE(DESCENDANTS(s)),

= PLACE(v) = ICAPTUREDI.

*, Thus, NETFLOW < ICAPTUREDI, a contradiction.

Thus, we have shown that it is always possible to service an excess request.

Next, we must show that NETFLOW = ICAPTUREDI between Parts 2 and 3 of the code.
This means that after servicing any excess request, there is no remaining request to be
serviced. Previous to Part 2, ICAPTUREDI < NETFLOW < ICAPTUREDI + 1. If
NETFLOW was equal to ICAPTUREDI + 1, then the body of the conditional was executed.
If the first case of the conditional held (i.e. the case for FREE * 0), then ICAPTUREDI is
increased by 1, so the invariant is restored. Otherwise, a "BUYER" message was sent to a
child, s, for which PLACE(DESCENDANTS(s)) - ARRIVALS(s) > BUYERS(s). This caused
NETBUYERS(s) to increase by 1, thereby increasing the value of NETFLOW and restoring
the invariant.

The third portion of the algorithm manages the travel of captured resources back to
requests. First, note that there can be only one captured resource assigned to GRANT at
any node in a single step, since the two assignments to GRANT cannot both be executed
during a single step. If the message is a captured resource, then no progress is done until
the clause contains the second grant. Otherwise, this clause is skipped. We must argue
that such a neighbor exists in this case.

Assume not. Then NETBUYERS(s) < NETGRANTS(s) for all s E NEIGHBORS. Now,
NETFLOW - ICAPTUREDI, so that JCAPTURED = IREQUESTS + NETBUYERS,

:_ IREQUESTSI + NETGRANTS,

- IREOUESTSI + ICAPTUREDI- ISATISFIEDI- 1

a IACTIVEI + ICAPTUREDI- 1. Therefore, 1 < IACTIVEI, a contradiction.

Thus, we have checked that the key assertions hold and the code can be executed at
all points. We have claimed (and tried to argue) that the algorithm follows the strategy of
the preceding section, in setting up a flow of buyers from requests to resources.
Eventually, the values of all the NETBUYERS(w) variables will stabilize, and the values
taken on by corresponding NETBUYERS(w) variables at either end of a single edge will be
negations of each other. (We use the fact that there are only finitely many requests here.
Eventually, no further requests will arrive, so no additional "ARRIVAL" messages will be
sent. There is a bound on how many'"BUYER" messages will be sent downward along
any edge. Therefore, there are only finitely many total "ARRIVAL" and "BUYER"
messages which get sent, so that eventually, they will all be delivered.) Similarly, all the
REQUESTS variables will eventually stabilize.

Finally, we must consider the travel of captured resources to request origins. Define a
new variable, MESSAGES(w), at node v, where w E NEIGHBORS(v). Its value is defined to

.................... . ...-.......... ........... . °... . .



17

By the ARRIVAL invariant, this is equal to

PLACE(DESCENDANTS) -PLACE(DESCENDANTS(s)) IEHLRN *
PLACE(DESCENDANTS(t)),

PLACE(v).

Thus, NETFLOW > PLACE(v). However, the original invariant says that NETFIOW
ICAPTUREDI, and ICAPTUREDI is never permitted to be greater than PLACE(v), a
contradiction.

We have thus shown that ICAPTUREDI < NETFLOW < ICAPTUREDI + 1 at the point
where that claim is made. Thus, there is at most one excess request that requires
disposition. In the case where there is an excess request, node v must service that request
in its subtree. There are two possibilities: either v can service the request locally, or it
cannot. If FREE * 0, then a free resource is captured to service the excess request. If
not, then a "BUYER" message must be sent down into some subtree. We must show that,
in the event FREE - 0, it is possible to send such a "BUYER" message. That is, we must
check that S *0 at the place where that claim is made.

Assume not. We will make some deductions about the values of the variables at the
point where that claim is made. At that point, we know that FREE - 0, so that PLACE(v)

aICAPTUREDI. We also know that

NETBUYERS(PARENT) PLACE(DESCENDANTS) -ARRIVALS(PARENT), by
definition of NETBUYERS.

Then

NETFLOW a IREOUESTS! + NETBUYERS(PARENT) + ISCIDENEBYR~)

:5 IREQUESTSI + PLACE(DESCENDANTS) - ARRIVALS(PARENT) +

ISECHIIOMNNETBUYERS(s).

Because S *0, it follows that

PLACE(DESCENDANTS(s)) -ARRIVALS(s) S BUYERS(s) for each s E CHILDREN.

Therefore,

NETBUVERS(s) .(PLACE(DESCENDANTS(s)) - ARRIVALS(s)).

Thus, the right-hand sie of the next-to-last inequality is equal to

IREOUESTSI + PLACE(DESCENDANTS) - ARRIVALS(PARENT)

ImEQ 4ILDREN(PLACE(DESCENDANTS(s)) -ARRIVALS(s)).



-7 - -Y -:,u V-. -7

16

The second portion of the algorithm manages the disposition of any excess flow of
requests into the node. We must first check that the number of excess requests after the
initial processing of a single message can only be 0 or 1. That is, we must verify that

* ICAPTUREDI :5 NETFLOW < ICAPTUREDI + 1 between Parts 1 and 2 of the code.

A quick check of the cases shows that the only way this could fail to be true is if M

remain unchanged, while NETBUYERS(PARENT) decreases. In this case, we can deduce
some relationships among the values of v's local variables at the beginning of the node
step.

For every t E CHILDREN, it must be the case just before execution of Part 1 that

*NETBUVERS(t) a min(PLACE(DESCENDANTS(t)) - ARRIVALS(t), BUVERS(t)),

so that

*NETBUYERS(t) 5 PLACE(DESCENDANTS(t)) -ARRIVALS(t).

That is,

NETBUYERS(t) ! ARRIVALS(t) - PLACE(DESCENDANTS(t)).

* Since NETBUVERS(s) remains unchanged, then it must be the case that

.NETBUVERS(s) * PL.ACE(DESCENDANTS(s)) -ARRIVALS(s).

(If they were equal, then PLACE(DESCENDANTS)(s)) -ARRIVALS(s)
min(PLACE(DESCENDANTS(s)) -ARRIVALS(s), BUYERS(s)), and an increase to
ARRIVALS(s) would cause a change to the minimum, thereby changing NETBUVERS(s).)

Therefore, NETBUVERS(s) 0 ARRIVALS(s) - PLACE(DESCENDANTS(s)), and so

NETBUVERS(s) > ARRIVALS(s) - PLACE(DESCENDANTS(s)).

Since NETBUYERS(PARENT) decreases, it means that NETBUYERS(PARENT)
PLACE(DESCENDANTS) -ARRIVALS(PARENT).

Now consider NETFLOW a (REQUESTS( + NETBUVERS. The right side is equal to

IREOUESTSI + NETBUVERS(PARENT) + NETBUVERS(s) + MIECH.ILREN,
t,,NETBUYERS(w).

By previous results, ths is, in turn, strictly greater than

IREQUESTSI + PLACE(DESCENDANTS) -ARRIVALS(PARENT)

+ ARRIVALS(s).- PLACE(DESCENDANTS(s))

+ 1tKcHLDRN, t1 8 ARRIVALS(t) -PLACE(DESCENDANTS(t)).



15

(Part 3)

/* Process M if N is a captured resource message. /

If N is a resource from w then
(NETGRANTS(w) :- NETGRANTS(w) - 1
GRANT :a M]

/0 Send a captured resource, if you have one, toward a request origin. */

If GRANT * 0 then

/0 NETGRANTS - ICAPTUREDI - ISATISFIEDI - 1. 0/

[if ACTIVE * 0 then
then

[choose r E ACTIVE
ACTIVE :- ACTIVE - (r)
output (r,GRANT)]

else
[choose w E NEIGHBORS with NETBUYERS(w) - NETGRANTS(w) > 0
send GRANT to w
NETGRANTS(w) :- NETGRANTS(w) + 1]

GRANT :- 0]

3. Correctness of the Algorithm
Theorem 1: The given algorithm solves the resource allocation problem.

Proof: We claim that the node program given above implements the strategy
described informally in the previous section. We do not give a proof of this
correspondence here. Rather, we argue correctness of the key assertions of the program
and give informal arguments for the rest of the proof of correctness of the algorithm.

The first portion of the algorithm, the initial processing of the first three kinds of
messages, simply sends the appropriate "ARRIVAL" messages and records the proper
changes to the various sets and counters.

For any of the three kinds of messages, node v is finding out about a new request that
needs to be processed. In some cases, v will need to do more to help process the request.
If the message is an "ARRIVAL", and node v thinks that the corresponding request can be

serviced in the sender's subtree, then v has no further work to do. If the message is a
request or an "ARRIVAL", and if node v thinks that it is impossible to service that request
In v's subtree, then the "ARRIVAL" message sent upward by v will be counted by v's
parent in its estimate of virtual buyers emanating from v's subtree. Thus, after sending this
"ARRIVAL" message upward, v will have no further work to do. Also, if the message is a
"BUYER" and v thinks that it is impossible to service the request in v's subtree, then v
need not do anything more. However, if v thinks that the new request can be serviced In its

subtree, then it has some further work to do, in the second portion of the algorithm.

-a-P

I., --. , - ,, - -,,.,'., ' . ':- .- ,. - ,,.--: ,*-*..,,... .-...-. .-.--..' .., ...,.,.,. ,,. .... .. ,,- ..: . .- .. . .. . ..'



14

i* The following invariants hold at the beginning of any node step.
NETFLOW = ICAPTUREDI.
ARRIVALS(PARENT) = IREQUESTSI + I E CHILDRENARRIVALS(w )].
GRANT a 0.
NETGRANTS - ICAPTUREDI - ISATISFIEDI. a/

(Part 1)

If M is a request then
[REQUESTS := REQUESTS U (M)
ACTIVE :- ACTIVE U (M)
send "ARRIVAL" to PARENT
ARRIVALS(PARENT) := ARRIVALS(PARENT) + 1]

If N = "ARRIVAL" from w then
[ARRIVALS(w) := ARRIVALS(w) + 1
send "ARRIVAL" to PARENT
ARRIVALS(PARENT) :* ARRIVALS(PARENT) + 1]

If N - "BUYER" then BUYERS(PARENT) :- BUYERS(PARENT) + 1

/* Now slightly revised invariants hold:
ICAPTUREDI NETFLOW < ICAPTUREDI + 1.
ARRIVALS(PARENT) - IREQUESTSI + I E CHILDREARRIVALS(w)].
GRANT - 0.
NETGRANTS a ICAPTUREDI - ISATISFIEDI. 0/

(Part 2)

/* Next, if there is an excess request, service it. 0/

If NETFLOW - ICAPTUREDI + 1 then

if FREE 0
then

[choose s E FREE
FREE :a FREE - {s)
GRANT :a Ss]

else
[/ Send "BUYER" down into a subtree. 0/

S :- (s C CHILDREN: PLACE(DESCENDANTS(s)) > ARRIVALS(s) + BUYERS(s))

/0 S 0 0. S/

choose NEXT E S
send "BUYER" to NEXT
BUYERS(NEXT) :z BUYERS(NEXT) + 1)

/0 NETFLOW ICAPTUREDI. 0I

L' . . .r. " " -" " .• . . ..•. ... ."""", ..'. ' ". J % .. . . ,
I,. , ., , . . . . , . . . . , " " " " ' . •. ". . . . . - ,



13

Another way to understand the equations is as follows. Again, consider the first equation, for w *

PARENT. Then NETBUYERS(w) = BUYERS(w) -VIRTBUYERS(w), where the latter quantity is the

number of virtual buyers which v estimates it has sent to its parent. Using the expression which was

derived in the preceding subsection for the number of virtual buyers, we see that NETBUYERS(w)

BUYERS(w) -max(ARRIVALS(w) + BUYERS(w) -PLACE(DESCENDANTS),O). This is equal to

min(PLACE(DESCENDANTS) - ARRIVALS(w),BUYERS(w)), as needed. Again, the other calculation

is similar.

The remaining dependent variables are:

NETBUYERS, for the total of all the NETBUYERS(w),

Dependency: NETBUYERS a 1w E NEIGHBORSNETBUYERS(w).

NETFLOW, for the net flow of buyers into v,

Dependency: NETFLOW = IREOUESTSI + NETBUYERS.

NETGRANTS, for the net flow of grants out of v,

Dependency: NETGRANTS n MW E NEHBOPSNETGRANTS(w).

The following code is executed in response to the receipt of any message or request, M. The first

part of the code does initial processing of messages, updating estimates and sending any required

."ARRIVAL" messages. After the first part of the code, there will be at most one excess request left at

the node, and if there is such a request left at the node, then the node is able to service that request,

either locally or by sending a buyer into a subtree. In the second part of the code, the node decides

where it can service such an excess request, and it does so. (In case a buyer is sent down into a

subtree, the subtree is chosen nondeterministicaly. Later, we will refine the algorithm to use a

probabilistic choice at this point.) Finally, in the third part of the code, the node processes an excess

captured resource, if it happens to have one. (It cannot have more than one.) The node can have a

captured resource either because M was a captured resource message, or because (in the second

part of the code) the node itself captured a local resource. The resource is granted to a local request

if possible; otherwise, it is sent in such a way as to negate the net flow of buyers into the node along

some edge. It is always possible to process such a captured resource in one of these ways.

• " . ." "" . " . '" "." .°.". .. "5 ' ' ' ' ' ".".'.". - ' "-"-". ' % ."." "."-' ' ' ' ' ' ' ' -.. k ' - "



12

'4' BUYERS(w), w E NEIGHBORS, for the number of "BUYER" messages sent to v's children and

received from v's parent, respectively,

NETGRANTS(w), w E NEIGHBORS, for the net flow of captured resources out of v to each of its

, neighbors,

NEXT, a temporary variable which can hold a vertex.

Initialization of Independent Variables

REQUESTS = ACTIVE = 0, FREE = RESOURCES, and all other variables are 0.

Dependent Variables and their Dependencies

CAPTURED, for the set of resources in RESOURCES which have been captured,

Dependency: CAPTURED = RESOURCES- FREE.

SATISFIED, for the set of requests in REQUESTS which have been satisfied,

Dependency: SATISFIED = REQUESTS- ACTIVE.

NETBUYERS(w), w E NEIGHBORS, for the net flow of buyers and virtual buyers into v from each

neighbor, (Recall the definition of "virtual buyers" from the last subsection.)

Dependency: If w = PARENT, then NETBUYERS(w) = min(PLACE(DESCENDANTS)

ARRIVALS(w), BUYERS(w)). If w E CHILDREN, then NETBUYERS(w)

.min(PLACE(DESCENDANTS(w) -ARRIVALS(w), BUYERS(w)).

These two equations can be understood as follows. Consider, for example, the first equation, for

w = PARENT. If PLACE(DESCENDANTS) -ARRIVALS(w) < BUYERS(w), it means that the placement

originally given for v's subtree is not adequate for handling the requests (arrivals) which have

originated in v's subtree, together with the "BUYER" messages sent down from w. Therefore, all the

resources in v's subtree are allocated to requests, either within or outside of v's subtree. Whether the

-. net flow of buyers should be regarded as into or outward from v's subtree then depends solely on the

- sign of PLACE(DESCENDANTS) - ARRIVALS(w), without regard to the number of "BUYER"

messages received from w. That is, if PLACE(DESCENDANTS) ARRIVALS(w), then the sign is

negative and the net flow of buyers is outward from v's subtree, while otherwise it is inward; in either

case, Its magnitude is equal to IPLACE(DESCENDANTS) -ARRIVALS(w)j. On the other hand, if

PLACE(DESCENDANTS) - ARRIVALS(w) 2! BUYERS(w), then the placement originally given for v's

subtree is adequate for handling both the requests which have originated in v's subtree, together with

the "BUYER" messages sent down from w. Therefore, the net flow of buyers is inward, and Its

amount is just equal to BUYERS(w), without regard to the other two values. The second equation Is

similar, with appropriate changes of sign.

i...........-*
-A)b..'% %'.*. . '



2.2. Formal Description

In this subsection, we present a program implementing the algorithm described above. A sketch

of a correctness proof is presented in the next section. Primarily, the proof consists of showing the

correctness of the invariant assertions made at various points in the program. The reader may wish to

examine the proof while reading the program.

We assume that the network is described by a rooted tree T. For uniformity, let the root of T have

an outgoing upward edge. (Messages sent along this edge will never be received by anyone.) We can

then write a single program for all the nodes of T, including the root.

Let V denote the set of vertices of T. Let RESOURCES(v) denote the resources placed at vertex v,

for each v E V, and let PLACE(v) = IRESOURCES(v)I for all v. Let REOUESTS(v) denote the requests

arriving at v. We assume that all the sets RESOURCES(v) and REQUESTS(v) are finite. Let

PARENT(v), CHILDREN(v), DESCENDANTS(v) and NEIGHBORS(v) denote the designated vertices

and sets of vertices, for vertex v.

The kinds of messages used are "ARRIVAL", "BUYER" and messages corresponding to specific

captured resources.

Program for node v, v E V:

In the program for node v, we use RESOURCES as a shorthand for RESOURCES(v), and similarly

for the other notation above.

It is convenient to think of the state of v as consisting of "independent variables" and "dependent

variables". The independent variables are just the usual kind of variables, which can be read and

assigned to. The dependent variables are virtual variables whose values are defined in terms of the

independent variables. These values can be read, but not modified. We can think of the reading of a

dependent variable as shorthand for a read of several independent variables, together with a

calculation of the function giving the dependency.

Independent Variables

REQUESTS, for the set of requests that originated at v,

ACTIVE, for the set of requests that originated at v, which are still unsatisfied,

FREE, for the set of resources in RESOURCES that have not yet been "captured" by requests,

GRANT, for a single captured resource on its way back to a request,

ARRIVALS(w), w C NEIGHBORS, for the number of "ARRIVAL" messages received from each of

v's children, and sent to v's parent, respectively,



it before A's buyer does. When (or before) A's buyer finally arrives at the resource's location, it will

encounter the information that the resource is no longer there. Then A's buyer will be sent upward,

backtracking in its search for a resource.

Ke
A B

Figure 1

Although such interference can cause backtracking, the buyer will eventually find a resource if

one exists. This is because no buyer ever leaves a subtree actually containing a resource.

Several optimizations are incorporated into the algorithm, as follows.

1. Buyers, unlike requests, need not be uniquely identified. Instead, each node keeps track of the

number of buyers received and sent and the net flow of buyers over each of its incident edges.

Captured resources then travel in such a way as to negate net flow of buyers, and because a buyer

will eventually leave a subtree which does not contain a resource.

2. Buyers can travel "discontinuously". Assume node v sends a buyer to a child node w, thinking

that there is an available resource in w's subtree. Assume that, soon thereafter, v receives a message

from w, informing v of an arrival of a new request in w's subtree, and implying that v's previous

supposition of an available resource was false. Then v knows that w will eventually send some buyer

back up to v, at which time v should send the buyer in another direction. Since v knows this will

eventually occur, v need not actually wait for the buyer to arrive from w; it can create a new buyer and

send it in anticipation of the later return of the first buyer. Since the first buyer will not find any free

resources in the subtree, this extra parallelism does no harm. In fact, with this optimization, it is no

longer necessary for w to return the buyer at all, since v must ignore it when it returns to it in any case.

3. If each node knows how many resources were initially placed in each of its children's subtrees,

then it is not even necessary for explicit buyers to be sent upward at all! All that is necessary is for

nodes to send "ARRIVAL" messages upward to their parents, informing them of the arrival of new

requests in their subtree. The parent is able to deduce the number of resources which the child

would like to have sent down (i.e. the number of buyers emanating from the child's subtree), from the

initial number of resources in the subtree, the number of arrivals in the subtree and the number of

buyers already sent down into the subtree. We will say more in a moment about how this deduction is

made.

-:--:.:-.:.. -.'.. ..'.. . ... . .. .... -. .. .... .. ... -.. .-.. .. . . . . . . . . .. .



24

Lemma 4: bnumTp = vbnumTP.

Proof: We sketch the argument for fixed r and C. For a particular edge e, let a denote
the number of request arrivals below e, be denote the number of "BUYER" messages sent
downward along e, and pe denote the number of resources placed below e, in the
execution for r and C. Since all resources get matched to requests, we must have % + be
- Pe' so that the number of virtual buyers sent over edge e is exactly max(a + be - Pe 0)
= %e+be-pe.

Now consider all the edges at any particular height h in the tree. Since all resources
and requests are at the leaves, and the branches are all of equal length, it is clear that

.heightT(e) = h a = total(p) - -heightT(e) x h Pe.

Therefore,

heightT(e) = h be = X-heightT(e) - h (a + be" P).

That is, the numbers of buyers and virtual buyers sent over edges of height h are equal.
Since this is true for all h, the result follows.I

Theorem 5: costTp _ 4(bnumT,P).

Proof: Immediate from Lemmas 3 and Restriction 3.1

Thus, in order to obtain an upper bound on costT,P(f), it suffices to prove a bound for bnumTP(f).

4.4. A Combinatorial Result

This subsection contains a key combinatorial result which will be used in the subsequent analysis.

We model the behavior of the algorithm at a single node v. The children of v are modelled as a set of

bins for resources. (Here, we do not concern ourselves about the tree structure beyond the children.)

Let c be a choice sequence for v. Each bin s is initialized to contain a number p(s) of resources.

The arrival of messages at v is described by a script, S. A script is a finite sequence of symbols,

each of which is either a bin number s or an "X". A bin number represents the arrival of an

"ARRIVAL" message from the specified child. The symbol X represents the arrival of a "BUYER"

message from v's parent.

The processing of script S on c and p, is as follows. The elements of S are processed

sequentially.

If S(1) is:

v-...~~~~~~~~ *~*2.*. . . . -* -. . . . .-.. .. ..." .*"t" D
°

"." "- . ° " - • " - • • -" ." •- . - .-. 
•

'- . .'-.'..' "- °. . ". "-. .... .".. . . .".. . .".. . .". ."... .".. . . . . . . . . . ..- *~.



25

s E bins, then
-. if bin s is nonempty,

then subtract I from the number of resources in s
else if some bin is nonempty then

[SELECT the first unused element of c describing a nonempty bin, t;
subtract 1 from the number of resources in t]

X, then
if some bin is nonempty then

[SELECT the first unused element of c describing a nonempty bin, t;
subtract 1 from the number of resources in t]

Define SELECT(S,c,pi) to be the number of times bin i is SELECTed during the course of

processing S on c and p. (Note that a bin is only said to be SELECTed when the choice sequence is

used to choose it, and not when it is explicitly chosen by the script. Define choice(S,c,pj) to be equal

* to k provided that when SO) is processed on c and p, the kth element of c is used to select a bin. (If no

- element of c is used, then choice(S,c,pj) is undefined.) It follows that SELECT(S,c,p,i) - 10:

c(choice(S,c,pj)) - 01'

For any script S, let binsequence(S) denote the subsequence of S consisting of bin numbers.

Script S is said to dominate script S' provided that: (a) T a T', where T - binsequence(S) and r =

binsequence(S'), (b) the total number of X's in S is at least as great as the total number of X's in S',
and (c) for each i, the number of X's in S preceding T(i) is at least as great as the number of X's in S'

preceding T'(i). The main result of this section is that, if S dominates S', then SELECT(S,c,p,i)

SELECT(S',c,p,i) for all c, p and i.

We say that an interchant.) of two consecutive elements of a script S is legal provided that the

first element of the pair is an X. We say that a script S' is reachable from a script S if S can be

transformed to S' by a series of legal interchanges. Note that S dominates all scripts S' reachable

from S; moreover, if S dominates S', then S' can be augmented with some suffix of X's, to a script

which is reachable from S.

Lemma 6: For any scripts S and S' such that S' is reachable from S, and for any
choice sequence c, placement function p and bin I,

SELECT(S,c,p,i) 2 SELECT(S',c,p,).

Proof: We prove this lemma by showing that if S' is reachable from S by a single legal
interchange, then the inequality holds. The lemma follows by induction on the number of
legal interchanges.

Fix S, c, and p. Assume that S' is obtained from S by interchanging S(j) . X with
Sj+1). If Sj+1) a X, then S a S', so the result is obvious. So assume S(j+1) , sE
bins. There are three cases.

Case 1: Bin s is empty after processing S(1)...S(.1) on c and p.

..-... .. -. . . . . . . . ..... .. .-. ", . '.-, .- :< .-. -. ... --.-.. .-.-.-. ....-.. . .--.-.. .,. .-.



26

Then choices using c are made for both S and S' at both steps j and j + 1. Thus,
choice(S,c,p,j) = choice(S',c,p,j) and choice(S,c,p,j + 1) = choice(S',c,p,j + 1). The
number of resources remaining in each bin after step j + 1 is the same for S and for S', and
therefore processing continues identically for S and S' after that point. Thus,
SELECT(S,c,p,i) = SELECT(S',c,p,i).

Case 2: Bin s contains more than one resource after processing S(1)...S(j-1) on c and
p, or else c(choice(S,c,p,j)) is not bin s. (That is, the bin selected by the choice made at
step j is not bin s.)

Then the effect of the pair of steps i and 1 + I is the same for both S and S': a resource
is removed from bin s and a resource is removed from bin c(choice(S,c,p,j)). (When
processing S, the choice from c occurs first, while when processing S', the explicit
removal from s occurs first, but the net effect is the same.) Subsequent processing of the
two scripts will be identical, and once again, SELECT(S,c,p,i) = SELECT(S',c,p,i).

Case 3: Bin s contains exactly one resource after processing S(1)...S(j-1), and
c(choice(S,c,p,j)) = s. (That is, the bin selected by the choice made at step I is s.)

In this case, the processing of S uses choices from c at both steps j and j + 1, because
the choice of s at step j removes the last resource from bin s, and so a choice must also be
made at step j + 1. The processing of S' does not need a choice at step j, although it Is
forced to choose by the X at step j+ 1. Thus, in both cases, step j removes the last
resource from bin s, while step j + 1 makes a choice using c. Then choice(S,c,p,j + 1) -
choice(S',c,pj + 1); that is, the same entry in c is used at step j+ 1 in both cases. The
combined effect of steps j and j + 1 on the bins is the same for the two scripts. Subsequent
processing is again identical, so SELECT(S,c,p,i) = SELECT(S',c,p,i) for bin i * s, and
SELECT(S,c,p,s) = SELECT(S',c,p,s) + 1 > SELECT(S',c,p,s).I

We can now state the main result of this section.

Corollary 7: For any scripts S and S' such that S dominates S', and for any choice
sequence c, placement function p and bin I,

SELECT(S,c,p,i) > SELECT(S',c,p,i).

Proof: Let T be an augmentation of S' by a suffix of X's, such that T is reachable from
S. Then Lemma 6 implies that SELECT(S,c,p,i) _> SELECT(T,c,p,i). But the latter term Is
obviously at least as great as SELECT(S',c,p,i).

4.5. Expansions

In this subsection, we show that the number of "BUYER" messages sent is a monotone

nondecreasing function of the interarrival time of the arrival distribution. We do this by comparing

particular pairs of executions.

For n E N, let [n] denote {1,...,n). If a E R and r - (vi,ti)i k]' is a request pattern, then ar, the

expansion of r by a, is the request pattern (visati)iE k]. That is, ar represents the request pattern in

I

r

I' ..:.:. * - .. .. *.. -*. . * .: *,~' *.---.* .. :'*%.** -. --- -- * * 7.. .



27

which the successive requests occur at the same locations as in r, but in which the times are

expanded by the constant factor a.

We will compare executions for request pattern r and request pattern ar, using the same choice

sequence. We require a technical restriction, just to avoid the complications of having to consider

multiple events occurring at the same node at the same time, in either execution. A request pattern, r,

is said to be a-isolated provided that no two requests occur in r at the same time, and provided that

the following holds. If t1 and t2 are two times at which requests arrive in r, where t1 t2 , and if kisan

integer, then the following are true: (a) t1 -t 2 * 2k, and (b) t1 • t2 * (2/a)k.

The next lemma is crucial to our analysis. Its truth was first observed empirically, and then proved

analytically. It says that the number of "BUYER" messages sent during an execution cannot increase

if the request pattern is expanded by a constant which is greater than or equal to 1.

Lemma 8: If a > 1, and r is a-isolated, then bnumT.o(r,C) -- bnumT p(arC).

Proof: Fix T, p and C. Let bsent(r,e,t) denote the number of "BUYER" messages sent
along edge e, in the execution for r (using T, p and C), up to and including time t. Let
brec(r,v,t) denote the number of "BUYER" messages received by vertex v, in the execution
for r, up to and including time t. Lot arec(r,e,t) denote the number of "ARRIVAL"
messages received along edge e, in the execution for r, up to and including time t. We will
show the following:

Claim:

beent(r,e,t + heightT(e)) : bsent(ar,e,at + heightl(e)) for all r, e, and t

This is a stronger claim than required for the lemma, since it shows an inequality not
only for the total number of "BUYER" messages, but for the number along each edge, up
to corresponding times.

Fact 1: arec(r,e,t + height.(e)) a arec(ar,e,at + heightT(e)).

This is so because the number of requests arriving in request sequence r by time t is
the same as the number arriving in request sequence ar by time at, and messages just flow
up the tee at a steady rate.

The rest of the proof proceeds by induction on heightT(e), starting with heightT(e) -
height1., and working downward towards the leaves.

Base: heightTle) a heightT

In this case, e's upper endpoint is rootT . The actions of rootT are completely
determined by the "ARRIVAL" messages it receives, which are the same at corresponding
times in the two executions, by Fact 1. The Claim follows.

Inductive step: heightr(e) < height1.

.. 2
: .' "' "'-- • ." "- -';' .. . . . . ..'"" " . . .; % - r



28

Let v be the upper endpoint of edge e, and the lower endpoint of edge e'.

Fact 2: brec(r,v,t + heightT(v)) _5 brec(ar,v,at + heightT(v)).

This is so because brec(r,v,t + heightT(v)) = bsent(r,e',t + heightTv) 1) because all
messages take exactly time 1, = bsent(r,e',t . 2 + heightT(e')), < bsent(ar,e',a(t-2) +
heightT(e')) by inductive hypothesis, = bsent(ar,e',a(v.2) + 1 + heightr(v)),
brec(ar,v,a(t.2) + 2 + heightT(v)) _ brec(ar,v,at + heightT(v)), since a(t.2) + 2 -S at.

Now let us consider the situation from v's viewpoint. Node v is comparing two
executions, the first for r and the second for ar. All v sees is its incoming "ARRIVAL" and
"BUYER" messages, and v uses the same choice sequence in both cases. At
corresponding times in the two executions (i.e. t + heightT(v) in the first execution vs. at +
heighyv) in the second execution), the same number of "ARRIVAL" messages have been
received along each edge (by Fact 1), and an inequality holds for the number of "BUYER"
messages which have been received (by Fact 2). We will show the needed inequality for
the number of "BUYER" messages sent by v along each edge, up to corresponding times.

Fix any time t. We compare the first execution up to time t + heightT(v) with the
second execution up to time at + heightT(v), We claim that this situation is modelled by
the combinatorial problem presented in the preceding subsection. First, we represent v's
inputs in each of the two executions by a script, i.e. a sequence of X's and "bins" the latter
of which are identified with children of v. An X models the arrival of a "BUYER", while a E
bins models the receipt of a "ARRIVAL" message from s. (The fact that r is a-isolated
means that no two of v's inputs occur at the same time in the same execution, so a unique
sequence can be obtained in each case.) Let S and S' be the scripts for the first and
second executions, respectively (up to the indicated times). The claims in the preceding
paragraph imply that S' dominates S.

We claim that the processing described for the combinatorial problem models the
processing carried out at v during execution of the algorithm. In particular, a SELECT of a
bin s, if it occurs, models the sending of a "BUYER" message to s and associated
reduction of v's estimate of the number of resources remaining in s's subtree. With the
given correspondence between the combinatorial problem and the executions, the
conclusion of Corollary 7 translates immediately into the Claim.I

Lemma 9: If a > 1, and r is a-isolated, then bnumTP(r) _5 bnumTP(ar).

Proof: By Lemma 8, taking expectations.I

Define bnum, (a.f) to be the expected value of bnumT.P(ar), where r is chosen according to

and f. The next theorem states that the expected number of "BUYER" messages is a monotone

" nondecreasing function of the interarrival time of the request distribution.

Theorem 10: (a) If a k 1, then bnumTP(f) _ bnumT,p(a,f). (b) If 0 < a < b, then
bnumr,(a,f) < bnumT.(b,).

..-....' ' ' . *t? r ... ".'.'.. . " " . " - -. ".- . . . . .. . . . • . .



29

Proof: (a) If a request sequence is chosen according to TT and f, then with probability
1, it will be a-isolated. The result then follows from Lemma 9, by taking expectations over
r.

(b) Let g be the probability density function defined by g(at) a f(t). Since b/a 1, we
can apply Part (a) to b/a and g, obtaining bnumT (g) < bnumT ,(b/a,g). But bnumT.P(g)
- bnumT4p(a,f) and bnumT.P(b/a,g) - bnumT,P(b, yielding the result.I

4.6. Summary of Monotonicity Analysis

In this section, we have made the following restrictions, repeated here for convenience.

Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randomT.s .

Restriction 2:

Delivery time for messages is always exactly 1.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

The major results we have proved in this section are that the expected response time is closely

approximated by the expected number of "BUYER" messages (Theorem 5) and that the expected

number of "BUYER" messages is a monotonic function of the interarrival time (Theorem 10). We can

combine these two results, obtaining the following:

Theorem 11: COstT () __. 4 lim,_ oobnumr(,f).

Proof: Consider what happens to the value of bnumT D(af) as a increases. This value
is monotonically nondecreasing, by Theorem 10. Also, iA is bounded above, because no

execution causes more "BUYER" messages to be sent on any edge than the number of
resources initially placed below that edge. Therefore, the limit exists. The result follows
immediately from Theorems 5 and 10.1

That is, the expected cost of the algorithm for any probability function, f, Is bounded in terms of the

limiting case of the algorithm, as the interarrival time approaches infinity. But note that as the

interarrival time approaches infinity, the algorithm gravitates towards a purely sequential algorithm.

one in which each request gets satisfied before the next one arrives. This kind of sequential algorithm

is amenable to analysis of a more traditional kind, the subject of the next section of this paper.

*.....** ........ ... ... . ..... ... ... ,



30

It seems quite surprising that the sequential case is the worst case. Our initial expectation was that

cases where considerable interference between requests occur would be the worst case. The

monotonicity theorem indicates that that is not so. Of course, we have made a few assumptions in

this section, most significantly the equal lengths of branches. It is quite likely that the sequential case

will not be the worst case for an algorithm using more general tree topologies. The analysis in this

more general case so far seems quite intractable, however.

5. Sequential Analysis
In this section, we analyze the sequential case of the algorithm. In the next section, we combine

the results into an upper bound for the entire algorithm. Once again, we allow arbitrary weighted

trees T, and allow r and p to be nonzero anywhere.

5.1. A Simplified Problem and Algorithm

The sequential case of the algorithm offers considerable simplification over the concurrent cases.

There is no interference at all, since each request arrives after previous requests have been satisfied.

This means that all the estimates of remaining resources are completely accurate. In fact, the result Is

equivalent to that of an algorithm in which all information is known globally.

The behavior of the algorithm in the sequential case can be modelled by repeated calls to the

following sequential program, FIND. The program takes a weighted tree, a nonnull placement, and a

vertex (the vertex at which a request occurs) as input, and returns a vertex (the vertex at which the

resource to be granted is located).

FIND(T,p,v)

Case
p(v) ) 0 : return v
p(descT(V)) - 0 : return FIND(T,pparentT(v))
p(v) * 0 and p(descT(v)) > 0:

[S : {w E childrenT(v): p(deSCT(W)) > 0)
return FIND(Tp.randomTS)]

endease

Thus, a request is satisfied, as before, in the smallest containing subtree which contains a

resource; where there is a choice, the probability function is used.

Lemma 12: If p is nonnull and v E verticesT, then FIND(T,p,v) eventually halts and
returns a vertex, v, with p(v) > 0.

Proof: Straightforward.I

'_ ' , ',' ' ./,," " ..... ...... '" "'.," .'.'..'....."..,........".,.-.-.....,.,.",.......•...............-......,..,



31

We next want to prove a lemma which will be useful in the later analysis. The content of the

lemma is as follows. Let randomT denote the probability function which returns s E leavesT with

probability qPT(S). Assume T is a weighted tree and p is a placement which is nonzero only at leaves.

Consider the following two experiments.

(1) Call FIND(T,p,rootr), and

(2) Call FIND(T,p,randomT).

We claim that the "results" of these two experiments are the same. That is, for each w E

verticesT, the probability that experiment (1) returns w is exactly the same as the probability that

experiment (2) returns w. It will follow from the next lemma that this Is so.

Some notation is helpful here. The result of FIND on a particular set of arguments can be

expressed as a probability distribution of vertices. Let aTPv denote the probability distribution of

results for FIND(T,p,v). That is, FIND(T,p,v) returns w with probability aT ,v(W).

Lemma 13: Let T be a weighted tree, p a nonnull placement for T. Assume that p is
nonzero only at leaves. Then the following are true.

(a) If v E internalT, then a T,pv IwEchildrmn.(V) [[T(deSCT(W))/VT(deC(v)) 4TAWJ.

(b) If v E verticesT, then a Tpv I wEduTv) [[ T()/,T(desCT(v)) ] J

Proof: In the proof, we assume T and p are fixed and write av in place of aTp.,v' tc.

(a) We consider cases.

Case 1: p(descT(v)) a 0

Then since the algorithm immediately calls FIND on parentT(v), we see that a. m
a .Similarly, for all children, w, of v, we have aw a a PNMT(V)' Since

I wEclrren(v) 1PT(deSCT(w))/T(desCT(V))] = 1, the result follows.

Case 2- p(descT(v)) > 0

Since we are assuming that v E internalT, we know that p(v) a 0. Let S -

{w E childrenT(v): p(descT(w)) > 0). Then S 0 0. The third case in the algorithm
holds, and we have that

a.. a Es %]. Now,

IwEdfirnT(v) [YT(deSCT(W))/YPT(descT(V))] awl

I.



32

+ wE hlreO' 11TdSTW)/TdST) aww'

By the remark above. this sum is equal to

+ XwEchiidrenT(v).S [[YFT(descT(w))/TT(deST(V))J awl.

If w E children,(v) - S, we know that p(descT(w)) = 0, so that aw aparentT(w) av.

So the sum above is equal to

a. (YFT(desTS /F~eSTV) + %v MwEhidre..(v).S [(YT(deSoT(W))/q)T(dST(V))],

*a~ . ,T(dese(S))/T(deST(v))l + av [('WT(deSCT(v)) q 9)(descT(S)))/ #pT(descT(V))],

aV

(b) We proceed by induction on the height of v.

Base: v C leavesT

Then the only w in desc1.(v) is v itself, so the sum on the right is just [qT(v)/9)T(V)] av

a a., as needed.

Inductive step: v E intemnaT

Then a. 1 WEhi~myv) ftqT(des T(w))/4FT(deSCT(V))] awl, by part (a),

a Iw~chidruin (v) 11F~eC()/'TdSTV) YsEdmTyw) [[YPT(S)/9)T(deSCT(w))l as]]'
by inductive hypiefsis,

Y w~childrav) SEdsc(w) 11)()T~dSTv) a],

as eerie .1

Part (b) of this lemma, with v .roo.y proves equivalence of the two experiments described prior to

the emmnL



33

We can restrict attention to "request sequences" in place of request patterns, in the sequential case

of the algorithm. Assume that T is a weighted tree, and p is a placement for T. A request sequence, r,

is a sequence of elements of vertices- r, representing a sequence of request arrival locations.

Similarly, a resource sequence, r, is a sequence of elements of verticesT, representing a sequence of

resource locations. In either case, let length(r) denote the number of elements in a sequence. A

resource sequence, s, is compatible with a placement, p, provided that Is'(v)l < p(v) for each v E

vertices.r . (That is, the resource sequence grants. at most the number of resources placed at each

vertex.) If r is a request sequence and p is a placement with total(p) _> length(r), then a matching of r

and p is a pair m a (r,s), where s is a resource sequence compatible with p and length(r) = length(s).

A matching describes the successive locations of resources which are used to satisfy a sequence of

requests.

Next, we define a probabilistic program which takes as inputs a request sequence, r, and a

placement, p, with total(p) length(r), and returns a matching of r and p. The procedure simply uses

FIND repeatedly.

MATCH(T,p,r)

For i a 1 to length(r) do
Is(1) :- FIND(T,p,r(i))
p(s(I)) :- p(s(i)) - 1]

Theorem 14: Let r be a request sequence, p a placement with total(p) > length(r).
Then MATCH(T,p,r) will eventually halt and return a matching of r and p.

Proof: Straightforward.I

This algorithm is designed to behave exactly as the sequential case of our general algorithm.

5.2. Cost Measures

Let distT(UTv) denote the tree distance between u and v. If m a (r,s) is a matching, then

seqcostT,(m) a MidistT(r(i),s(i)). Thus, the "sequential cost" is Just the sum of the tree distances

between successive requests and their corresponding resources.

If r is a request sequence with length(r) :_ total(p), then define soqcostTP(r) to be the expected

value of seqcostr(m), where m is constructed using MATCH(T,p,r). Let seqcostT, denote the

expected value of seqcostT,P(r) , where r is of length total(p), with its successive locations chosen

independently according to ip-""

In the remainder of this section, we analyze seqcostTP.

' -- -'. b. . s---7...,- ~ -



34

5.3. A Useful Recurrence
In this subsection, we present a solution to a system of recurrence equations. This solution will be

useful in later subsections.

Let c E R *. Define Gc: N x R + -- R by the equations:

Gc(Ot) = 0, and GC(k,t) = max(Gc(k.l,tl) + Gc(k.l,t 2): tl + t2 < t) + ck "I for k > 1.

Lemma 15: For all k > 0, the following are true:

(a) The function mapping t to Gc(k,t) is concave downward and monotone
nondecreasing.

(b) If k > 1, then Gc(k,t) - 2GC(k. 1,t/2) + ckvt

Proof: We proceed by induction on k. The base, k = 0, is trivial. For the inductive
step, let k > 1. If t1 + t2 < t, then G (k-1,t 1) + G (k.l,t 2) <2Gc(k.1,(t1 + t2)/2), since the
inductive hypothesis states that the iunction mapping t to Gc(k-1,t) is concave. This is in
turn < 2Gc(k.1,t/2), by monotonicity. Therefore, G,(k,t) = 2Gc(k.1,t/2) + ckv/T, showing
(b). Since each term is concave and monotone, the sum is also, showing (a).U

Theorem 16: GC(k,t) __ (3/2+ 4)c /t 2

Proof: By Lemma 15, Gc(k,t) a 0 if k a 0, and 2Gc(k.l,t/2) + ck-Vt if k 1.
Expanding this recurrence, we see that Gc(k,t)

c[ZI 0..k1i(k- i) XO/21] for all k > 0,
.c(' ,. kl(k'i)I/f •  lk0

Let x - 1//, n a 2k.Then

GC(k,t) - (c .t n/i// [Yi. ,O...,k.1 (k i)xk' ' ],

S(cv4tl/'r/ [(l + kxk (k+ 1)xk)/(1.x)2l,

• (c/i./rj/(v2j1 //i2l + kxk +. (k + )xk,

.(c/i )(3 y2 + 4)[1 + kx+ I.(k+ ,)xk].

* (c,€Fn)(3v2 + 4)[1 + (kx . k. 1)xkl],

<(c/fn./)(3I'2, 4), since kx. k. 1 0,

* (c '2(3'V2 + 4).1

.. . .; .:.:;. ..:...:-.: . .-.:,..-::; .: .,.: .; % .,.-...-..: ... .,., -... ... ,. . . . . .. .



35

5.4. Recursive Analysis

Now, we require Restriction 3 and a new assumption, Restriction 4. These are to remain in force

for the remainder of Section 5.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.

If T is a weighted tree, then a weighted subtree, T', of T consists of a subtree of T together with a

probability function, qPF, given by pT(V) , PT(V)/WT(vertices.). That is, the weights of the subtrees

are just normalized restrictions of the weights of T. If T is a weighted binary tree, let IeftT and rightT
denote the designated weighted subtrees of T.

If T has height at least 1, then let T1 and T2 denote leftT and rightT, respectively. Let p, and p2

denote pIT 1 and pJT 2, respectively. If r is a request sequence, let overflowT.P(r) denote

11r*1(verticesT I)I - p(verticesT1 ), the difference between the number of requests that arrive in the left

subtree and the number of resources placed there. Let overflowT.p denote the expected value of

overflowTP(r), where r is a sequence of length total(p) chosen using T"

The following is a key lemma which provides a recursive breakdown for the sequential cost. It

says that the expected cost of matching breaks down into costs of matching within the two subtrees,

plus a charge for the requests that overflow into the opposite subtree.

Lemma 17: Assume height T t 1. Then seqcostTo _. seqcostT P + seqcostT,° +
2 heightT overflowTP.1

Proof: For any particular request sequence, r, there Is some particular number,
overflowTP(r), of requests that do not get satisfied within their own subtree, but rather
overflow into the opposite subtree to find a resource. To be specific, assume that it is the
left subtree from which any excess requests overflow. Let r, be the subsequence of r
consisting of requests arriving in T1, truncated to length p(T1). Let r2 be the subsequence
of r consisting of requests arriving in T2. Recall that seqcostT.p is the expectation of the
search cost for enough requests to exhaust all resources present.

Before the time at which the left subtree overflows, the algorithm MATCH(T,p,r) runs
exactly like MATCH(T,,p,,r,) within the left subtree. Requests originating within T,
become matched to exactly the same resources in both executions.

We now consider the right subtree. Requests which originate within the right subtree
are handled in the algorithm MATCH(T,p,r) exactly as they are in the algorithm for T2 and
p. However, there are also overflow requests from the left subtree, which enter T2 at its
root rather than at its leaves. By Lemma 13, whenever such a request arrives, its
probablity of being matched to any particular resource is exactly the same as if the



36

request had entered at a random leaf of T2. All the requests remain independent, and
these additional requests are just enough to exhaust the resources in T2.

Now assume that the request sequences, r, are chosen at random according to 9)T"
They result in subsequences r1 and r2 which are chosen at random according to q)T and

TT2 , respectively.

We claim that seqcostTp , the expected cost taken over all r, is bounded by

seqcostT, ' p, the expected cost taken over random sequences in the left subtree,

+ seqcostT2.,2 the expected cost taken over random sequences in the right subtree,

+ 2 heightT overflowT..

The third term allows for the expected overflow of requests, and assigns them the
maximum cost, 2 height T.

Consider the first term. (The second term is analogous.) The first term allows for the
expected cost incurred by an execution of MATCH on a random sequence of requests
within T1.

In case T1 has its resources exhausted by requests originating within that subtree, this
term measures exactly the expected cost for the matching of the first requests in T1 to all
the resources in T1. This term ignores the cost incurred by any excess requests
originating within T1 which do not get matched within T1. However, that is not a problem,
since those costs are counted by the third term.

In case T1 does not have its resources exhausted by requests originating within T1, this
term is actually greater than needed to measure the expected cost of matching all requests
originating in TI; in fact, it is enough to measure this cost of matching these requests,
interspersed with enough other random requests (arriving at the leaves of T1) to use up all
the resources in T1. We have already argued that these requests behave as if they were
interspersed with other random requests, because requests arriving at the root match in
the same way as if they arrived at random leaves. In this case, the first term does not
account for the cost of matching those requests which enter Ti at its root. However, that is
not a problem since that cost is covered by the third term.I

5.5. d-Falmess

We need to make another restriction on the slgorithm, for the purpose of analysis. In particular, it

is reasonable that the behavior of the algorithm should be best when the resources are distributed in

the tree in some relationship with the probabitity distribution governing arrival of requests. (The paper

[Fischer, Griffeth, Guibas and Lynch (1981)] considers optimal placements of resources in a tree
network.)



37

For d E RW, we say that a placement, p. is d-tair provided that the following is true. Let u,v E

verticesT., where u E deSCT (v). Let q'.1 = q,.r(deSCT (v)) and q2= 9T (deSCT (u)). Then jp(deSC1.(U)) -

(T2/'W1 )p(deSC(V))I :5 d V142(q),)p(deSC1. (V)) . That is, for each subtree, the number of resources

placed in each of its subtrees; is approximately proportional to the probability of arrivals in that

subtree, and the difference is proportional to the "standard deviation". For any T, if t and d are

sufficiently large, then techniques in [Fischer, Griffeth, Guibas and Lynch (1981)] can be used to

produce d- fair placements of t resources in T.

From now on in Section 5, we assume the following.

Restriction 5:

p is d-fair (for some arbitrary but fixed d).

The next lemma says that restrictions of d-f air placements are also d-fair.

Lemma 18: Let p be a d-fair placement for T, Let T' be any subtree of T, and p' =

piverticesr, the restriction of p to vertices.. Then p' is d-fair for T'.

Proof: Let u, v E vertices., with u E descr (v). Let T = q)T(deCT(V)), ~2 a

9)T(descT(u)), V"1  - Tr (descr (v)), and q)'2 = Tr (descr(u)). Then ip' -

4Fi/q)T(vertcesr) and 'P' a 2/)(verices ), by definition. Therefore, q,'(2)/9)'(1) =

Vp2/W1.

Note that p'(descr . (u)) - p(desc1.(u)), and p'(descr(v)) = p(descr(v)). Thus,

Ip'desc TIM) - (q)2"/'1'I p'(descr(v))I

= p(desc1.(u)) - (q)241) p(desc1. v))I,

< d 14V2/ p)p(descT(v)) since p is d-falr,

-d Tf(y 2/9 '1)p'(des%-(v)), as neededi1

The final lemma of this subsection bounds the expected overflow for d-fair placements.

Lemma 19: overf low1  < (6 + d) f,/.(verticesT totai(p).

Proof: Blr"(verticesT )I - p(vertices.. )1 5 Ijr"'(verticesT1 )I - 9T (verticesT totai(P)l +

Iy~i.(verticesT I ) total(p)l - b(vertices 1 )1. 1 1

Th-xtevalueof the first of these quantities, taken over r, is bounded by

6 Jy1. (vertices1.)total(p), using Lemmna 3.1.5 of [Fischer, Griffeth, Guibas and Lynch

The second quantity is bounded by d Jj" erticesT total(p), since p is d-fair.1
TTI



5.6. Sequential Analysis

Let sizerT denote the number of vertices in T. We now give the main result of Section 5, that

seqcost,, is O( .'SzeT totapD. This says, for example, that if total(p) is proportional to size7,' then

the total cost is proportional to total(p). This implies that the average cost per request is just a

constant, independent of the size of the network.

In order to prove this theorem, we require the following restrictions, repeated here for

* convenience.

Restriction 3:

T has all leaves at the same distance from the root, and r arnd p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.
2 ~Theorem 20: seqcost7,P is 0( /sizeT total(p)).

(More specifically, seqcost-.P 5 (3v'2+ 4)((6 + d)v 2) / 2 4sgt total(p).)

Proof: By Theorem 16, it suffices to show that seqcost 4P : Gc(heighttotal(p)),
where c - (6 +d)I

We proceed by induction on height1.

Base: height-r = 0

Then T has a single vertex, and seqcost7 -~ 0. The inequality is immediate.

Inductive Step: heightT1 > 1

Then seqcost7 p :5 seqcost ++e 2 hitToelwTby Lemma
17, st. , + ecor 2, 2  hegt+vrlw~

5 ~seqcost 7  seqcost,. + 2 heih' (6 + d) N4Tvrie )total(p), by Lemma

A similar inequality holds for T in place of T within the square root. Since at least one
of ipT(verticesT ), ,.1(vertice.r ) is no more than 1/2, it follows that seqcostT7, :

1 2

seqcostT + seqcost7 + 2 heightT (6 + d) y( 2 oa~)

seqcost7 + seqcostT,p + (6 + d) r2 heightr vIitalp).

11 P



By Lemma 18, we can apply the inductive hypothesis, which implies that the right hand
side of this inequality is at most equal to

Gc(heightT" ltotal(p,)) + Gc(heightT" ltotal(p2)) + (6+d)2heightT ' .

The definition of Gc implies that this latter expression is at most equal to

G,(heightT'total(p)), as needed.I

6. The Final Analysis
In this section, we combine the monotonicity analysis and the sequential analysis, to obtain an

upper bound for the expected cost for the algorithm.

6.1. Relationship Between the Costs

Now we require the following restrictions.

Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

random ,s .

Restriction 2:

Delivery time for messages is always exactly 1.

With these restrictions, there is a close relationship between the costs of our general algorithm

and the cost of the sequential algorithm MATCH.

Lemma 21: seqcostTo U lime A o(bnumTp(a,f) + vbnumT.P(a,f)).

Proof: There is an absolute upper bound on the time for our algorithm to satisfy a

single request, in the absence of concurrent requests. Thus, as a increases, the
probability that there are any concurrent requests approaches 0.

Therefore, the limiting case of the general algorithm behaves like MATCH. There Is no
backtracking, so the total search time just reduces to the sum of the distances from
requests to the resources which satisfy them. This sum is just the total number of buyer
and virtual buyer messages.I

Now let us add one more restriction:

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

With this added restriction, we can prove a variant of the preceding lemma.

.- 2.



40

Lemma 22: seqcostT,p - 2 lim .. # oo(bnurnTP(a,f)).,

Proof: By Lemmas 21 and 4.1

This immediately implies the following bound on the cost of the general algorithm.

Lemma 23: cost.r,(f) __ 2 seqcostT,P.

Proof: By Theorem 11 and Lemma 22.1

6.2. The Main Theorem

Now we are ready to present the main result, the upper bound for the expected cost for the

general algorithm In order to apply the results of both the monotonicity analysis and the sequential

analysis, we must assume the restrictions made for both cases. More specifically, we assume all of

Restrictions 1-5:

Restriction 1:

T is a weighted tree, and the nondeterministic choice step in Part (2) of the algorithm uses a call to

randomTs.

Restriction 2:

Delivery time for messages is always exactly 1.

Restriction 3:

T has all leaves at the same distance from the root, and r and p are nonzero only at leaves.

Restriction 4:

T is a complete binary tree.

Restriction 5:

p is d-fair (for some arbitrary but fixed d).

Theorem 24: Let f be a probability function. Then costTp(f) is O(-sizT total(p)).

(More specifically, costr (f) _<2(3r + 4)((6 + d) r2,,/2 ght total(p).)

Proof: By Lemma 23 and Theorem 20.1

In particular, provided that total(p) Is proportional to sizeT, the expected average time taken by

this algorithm to satisfy a single request is constant, independent c u .'ze of the network.



41

Remark: It is possible to prove a variant of Theorem 24, for the case in which the placement p is

chosen at random using 9T' oust as the request locations are chosen), rather than being d-fair. We

sketch the Ideas briefly.

First, we must extend the cost definitions to include expectations taken over placements of a

particular length. Thus, we define costTt(f) to be the expected value of costr,P(f) for p with total(p) ,

t. Analogous definitions are made for seqcost.t and overflowTt. Lemma 23 then implies that

cost.,t(f) : 2 seqcostTt. It is also easy to see that overflowT t < d .7 ,P(verticsT) t, for some

constant d.

Next, we prove a consequence of Lemma 17 which says that seqcostr t _ ExP (tt ) wvit t, + t

(seqcost . , t, + seqcotT2,t2) + 2 heightT overflowT t. (Here, the expectation is taken over pairs

which are obtained by using VT to assign resources to T1 or T2.) This obviously implies that

Seqcost,, ! <mx th t+ t (seqcostT, 1 + seqcost't ) + 2 heightT overflowTt .

Now we prove a variant of Theorem 20 which says that seqcostTt is O(-/ sizeT t). More

specifically, we show that seqcostT,t < Gc(heightTt), where c - d ,T This is easily done by

induction as before, using the new lemmas just described.

Combining these results, we see that costTt(f) is 0(JeQ.

7. Remaining Questions
There are several directions for remaining research.

First, we would like to extend the analysis of the general algorithm. We would like to loosen our

restrictions on tree shape, message delivery time, and locations for resources and requests. If we do

* this, is it possible to carry out an analysis similar to the one in this paper? In particular, can the

concurrent cases of the algorithm still be bounded in some way in terms of the sequential case?

We would also like to extend the analysis of the sequential algorithm, MATCH. Here, we would

like to loosen restrictions on tree shape and on locations for resources and requests.

There are some apparent improvements in the algorithm, for example adjusting the probabilities
for the choice among children in response to knowledge of the number of resources remaining in

each subtre. While this seems like an improvement, the resulting algorithm seems harder to analyze
(since the recursive decomposition doesn't appear to work). Can any simple modifications be shown

to be improvements?

We would like to compare the performance of this algorithm to that of alternative algorithms which

solve the same problem. We have already observed that this algorithm performs much better than the

centralized algorithm, which locates all resources at the root. How does it compare to algorithms

•.V. -. - ' . . . . . ..... . . . .,.'. . ., . . -. . ,.,.. . . .' . . . . .' . . . .,; .'-" . ".",!.".' .



42

which allow requests to search for resources in parallel rather than sequentially? What about

algorithms which rebalance resources? Are there other interesting ideas for algorithms for this

problem?

Finally, the general analysis strategy is quite attractive. Proving a monotonicity result which

bounds the concurrent cases of an algorithm in terms of the sequential case, and then analyzing te

sequential case by traditional techniques, appears quite tractable. The use of this strategy for our

*. algorithm appears to depend on many special properties of the algorithm and on restrictions on the

execution. Is the strategy more generally useful? For what type of algorithms can it be used?

8. References
Fischer, M., Griffeth, N., Guibas, L., and Lynch, N. (1981), Optimal placement of identical

resources in a distributed network, in "Proc. 2nd International Conference on Distributed
Computing". Also, to appear in Infor. and Control.

Guibas, L.J., and Liang, F. M. (1982), Systolic stacks, queues, and counters",
in "Proc. 2nd MIT VLSI Conference".

F.



DISTRIBUTION LIST

Office of Naval Research Contract NO0014-82-K-0154

Michael J. Fischer, Principal Investigator

Defense Technical Information Center Naval Ocean Systems Center
Building 5, Cameron Station Advanced Software Technology Division
Alexandria, VA 22314 Code 5200
(12 copies) San Diego, CA 92152

(1 copy)

Office of Naval Research Mr. E.H. Gleissner
800 North Quincy Street Naval Ship Research and Development Center
Arlington, VA 22217 Computation and Mathematics Department

Bethesda, MD 20084
Dr. R.B. Grafton, Scientific (1 copy)
Officer (I copy)

Information Systems Program (437) Captain Grace M. Hopper
(2 copies) Naval Data Automation Command
Code 200 (1 copy) Washington Navy Yard

Code 455 (1 copy) Building 166

Code 458 (1 copy) Washington, D.C. 20374
(I copy)

Office of Naval Research Defense Advance Research Projects Agency
Branch Office, Pasadena ATTN: Program Management/MIS
1030 East Green Street 1400 Wilson Boulevard
Pasadena, CA 91106 Arlington, VA 22209
(I copy) (3 copies)

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D.C. 20375
(6 copies)

Office of Naval Research
Resident Representative
715 Broadway, 5th Floor
New York, NY 10003
(1 copy)

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380
(1 copy)

* q

. . ... • ":*.' .",Z "... .' -'., :"..'.. .' ., . '"-..i . " -,:: , z.: ,: .' , . :,. .,. .... , , % ,. . ,.. ... .4 , . . . .. , . .



FILMED

11-85

DTlC
- Kp~-


